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ABSTRACT

A high performance lossy data compression technique is currently being developed for space science

applications under the requirement of high-speed push-broom scanning. The technique is also error-

resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-

transform combined with bit-plane encoding; this combination results in an embedded bit string with

exactly the desirable compression rate. The lossy coder is described. The compression scheme

performs well on a suite of test images typical of images from spacecraft instruments. Hardware

implementations are in development; a functional chip set is expected by the end of 2001.

KEY WORDS

Coding, lossy data compression, telemetry, space science applications, push-broom instruments.

INTRODUCTION

The advances in sensors and detectors have culminated in a new era of scientific instruments for space

applications. These new instruments combine unprecedented spatial and signal resolutions in addition to
offering multi-spectral capabilities. The result is an increase in the volume of data that has to be

collected, buffered, transported, and archived in the space-to-ground data system.

To alleviate the burden caused by the extra data volume, compression has been suggested and in some

cases implemented on space platforms. However, scientists often object to any loss in the data and thus

accept only lossless data compression. The amount of data reduction achievable with lossless data

compression is usually limited by the inherent entropy measurement in the data, and for many remote

sensing applications is limited to about two-to-one.

For other applications that require higher data reduction, as in quick-look or direct-broadcast sensor

data, a lossy compression technique is needed. There exist various algorithms that provide good
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reconstruction performance at high compression ratios; however, none has adequately addressed the

implementation requirement arising from push-broom instruments. A scan line of data produced by the

push-broom type of sensor often exceeds two thousand pixels, and there is a limited amount of onboard

buffering and processing time available before the data has to be transported for direct broadcast. In the

following paragraphs, the requirements for space application of lossy data compression are stated, and

then a description of a technique that meets all the requirements, along with its performance on several

test images, is provided.

REQUIREMENTS FOR SPACE APPLICATIONS

Any implementation of lossy data compression on a space platform has to satisfy several requirements.

These requirements were addressed by the Consultative Committee for Space Data Systems (CCSDS)

Subpanel 1A Compression Working Group in 1998. The mandatory requirements are:

1. Process non-frame based (push-broom) as well as frame based input source data.

2. Offer adjustable data rate.

3. Work with large source quantization ranges up to sixteen bits-per-pixel (bpp).

4. Offer real-time processing at or greater than twenty Msamples/sec, and at less than one

watt/Msamples/sec. The power consumption includes all buffering and support electronics.

5. Require minimum ground interaction during operation.

6. Allow packetization for error containment.

A coder that meets all the above requirements is described below.

DESCRIPTION OF THE CODER

Overview

The lossy coder consists of several functional modules depicted in Figure 1. The scan converter takes

input imaging data and formats it into eight-by-eight blocks of integer values as input to the de-

correlator. The de-correlator employs a hybrid transform that performs a size-8 modulated lapped

transform (MLT) with sixteen input data points in the scan direction of imaging data, and a size-8

discrete cosine transform (DCT) in the other direction. This hybrid transform, termed enhanced DCT

(EDCT), uses overlapping blocks in the scan line direction to reduce the blocking effect inherent in a

two-dimensional (2D) DCT, but it allows isolation of strips of eight lines, as is often required by

practical implementation in a packet data system. However, the system also allows an eight-by-eight 2D

DCT, an eight-by-eight 2D MLT, or other types of block transforms to be implemented.

The bit plane encoder (BPE) first groups the eight-by-eight transform domain components into three

family trees; each has one parent, four children, and sixteen grandchildren. The magnitudes of

components are scanned for any most significant bit (MSB) on the scanned bit plane. This bit-plane

scanning proceeds from the top-most bit plane downward. The positional information of those

identified components is represented by a family tree structure and may be further coded for efficiency.
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Figure 1. Functional Diagram of the Coder

The BPE random access memory (RAM) holds BPE-processed information for as many input blocks as

it can support. The number of input blocks supported by this RAM is identified as one segment of input

data. A segment can be as simple as one strip of eight lines, multiples of eight-line strips, or even half a

strip.

The output bit string constitutes an embedded data format that allows progressive transmission and

decoding to start at a lower bpp rate and proceed to a higher bpp rate. The bit string can be terminated at

a desirable rate for precise control of output data rate.

De-correlator

The EDCT is implemented by two one-dimensional transforms, the MLT and the DCT. The specified

MLT takes sixteen input data points to provide eight transform components. The input is shifted by

eight data samples each time a new MLT is performed, as shown in Figure 2.

input data points: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,22, 23, 24 ....

,,Z J

input to MLT input to MLT

output MLT points: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 16 ....

Figure 2. Input Output Data Points for MLT
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The MLT is performed with the following equation (see Reference 1):

/_-15

 .tjj= (1)

where m is used to index the MLT output block. The j index indicates the jth MLT component in block

m. The input data sequence x[i] relates to the data samples in Equation (1) by:

x,_ [i] = x[(m - 1)8 + i] (2)

The Z( i, j) function is given by:

Z_,(i,j)=-sin[_-_-(i+l)]cos[rC(j+l)(i+9)] 0< i< 16 (3)
16222 8

for all blocks except the first and the last. For finite input data, the first and the last MLT blocks are

implemented with the boundary conditions given in Reference 1.

The DCT is computed by:

7

X[j] = Z xti]A(i, j)
(4)

0

A(i,j) = Cj_cos[_(i +l)] (5)

with Cj having been defined earlier.

The inverse DCT is given by:

7

x[i] = _.. X[j]A(i, j) (6)
j=0

Bit Plane Encoder

The frequency components of each block are then scanned from the highest bit plane of their binary

representations. The purpose is to locate components of magnitude > 2 "b but < 2 nb+_ at the nb-th bit

plane (the lowest bit plane is when nb = 0) and transmit their locations in the coded bit string before the

information of components at lower bit planes is conveyed. In this coding scheme, quantization is

inherently performed by an increase of a power of two as scanning proceeds from higher bit planes to
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lower bit planes. To facilitate coding, a family tree structure at the nb-th bit plane, shown in Figure 3, is

used to help identify components and guide the component scanning.

F 0

F I
F2:shaded

Figure 3. Family Tree Structure

Family Tree Scanning

The tree structure in Figure 3 consists of three family members: F0, FI and F2. Each has one parent, four

children, and sixteen grandchildren. During tree scanning, these elements are grouped into different

types of patterns and each pattern scanned as one entity. Thus parents will be scanned first, followed by

the children and the grandchildren.

For each block, the family tree scanning starts at the highest bit plane of all the AC components. At a

particular bit plane, nb, information extracted from all blocks is concatenated before proceeding to a

lower bit plane. This procedure produces an embedded bit stream that starts with information from

higher bit planes and proceeds to information from lower bit planes. At the desirable compression bit

rate, the bit stream can be stopped for precise rate control.

The performance of the BPE can be improved by further coding the scanned pattern from the family

tree. A truncated lossless algorithm derived from the CCSDS Recommendation (Reference 2) is utilized

in the coder.

PERFORMANCE

The compression scheme was tested on different types of imaging data collected on space platforms. In

the test, every strip of eight scan lines was processed independently and a fixed compression ratio was

obtained for each strip of data. With the fixed compression ratio for each strip and without any

information carried over strip boundary, error containment can be achieved within each strip.
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Two de-correlators were used: the EDCT and the 2D DCT. The PSNR listed in Table I shows that

EDCT provides a gain of 0.5 dB in most cases over the 2D DCT, except for the Hubble Space Telescope

(HST) test images, where the results are reversed.

Table 1. PSNR vs. Bit-Rate for Different Images

Image size bits/

pixel

2048x2048 10forest(avhrr)

ice(avhrr) 2048x2048 10

india(avhrr) 2048x2048 10

ocean(avhrr) 2048x2048 10

solar 1024x1024 12

sunspot 512x512 12

wfpc(hst) 800x800 12

foc(hst) 1024x512 12

mars 512x512 8

bpp bpp bpp bpp bpp bpp bpp bpp
2.0 1.0 0.5 0.25 2.0 1.0 0.5 0.25

EDCT 2D DCT

56.2 48.4 42.8 38.5 56.0 48.1 42.5 38.2

52.9 46.3 41.8 38.2 52.5 45.8 41.3 37.9

50.5 43.0 37.9 34.1 50.0 42.5 37.5 33.7

50.6 43.8 39.2 35.5 50.3 43.5 38.8 35.1

54.7 49.0 44.7 41.4 54.3 48.6 44.4 41.2

59.1 54.6 50.9 45.9 58.8 54.2 50.2 45.1

71.5 67.8 64.5 62.5 72.2 68.4 66.2 64.4

71.8 66.8 64.2 62.6 72.1 67.1 64.4 62.8

41.0 34.5 29.9 26.3 40.2 33.8 29.4 25.9

The performance of the compression can be improved by using larger BPE RAM to buffer intermediate
results from more than one strip; however, dependency among these strips will result. For comparison,

a 2D MLT was applied to the "india" test image, and a frame buffer was allocated. The improvement in

PSNR at 2.0 bpp is about 2.3 dB.

TECHNOLOGY STATUS

Rad-hard implementation of the compression scheme is being pursued. Currently, a custom VLSI chip

for performing EDCT and the 2D DCT has been designed, fabricated. Its processing speed is expected

to exceed twenty-five Msamples/sec. The VLSI architecture for BPE is under study. A functional chip

is expected in 2001. The compression scheme is simulated in software and has been tested on various

types of space data with satisfactory results.

CONCULSION

A high performance lossy data compression scheme has been developed for space applications. This

scheme offers real-time (over twenty Msamples/sec) processing on push-broom types of instruments.

The technique produces an embedded bit string with the desirable features of precise rate control and no

operator intervention.
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